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A review of cellular biopreservation considerations during 
hair transplantation
Aby J. Mathew, PhD Bothell, Washington, USA amathew@biolifesolutions.com

Introduction
Appropriate clinical biopreservation of cells and tissues is a critical factor in hair transplantation procedures, 

as well as in regenerative medicine (cell therapies and tissue engineering) and organ preservation. During the 
course of a hair transplantation procedure, the cells and/or tissues experience multiple forms of stresses related 
to the procedure from before the donor strip and/or follicular units are extracted, through the dissection and graft 
holding stages, and past the point of re-implantation. There are certain cellular and biochemical aspects of the 
hair transplant model that are unique to the specifi c types of cells and tissues involved. However, there is also 
much that can be taken into consideration from other in vitro and clinical cell models relevant to regenerative 
medicine, as well as from existing organ/tissue preservation knowledge.

Under normal conditions, the environment of human cells and tissues consists of an isotonic osmotic bal-
ance of ions that is maintained by ATP-driven cell membrane pumps. Major ionic constituents include sodium, 
potassium, calcium, and magnesium—each regulated by membrane pumps/channels that, along with chloride, 
are actively pumped inside or outside the cell to counterbalance the osmotic pressure of non-permeable fi xed 
molecules inside the cell and subsequently regulate the passive fl ow of water into and out of the cells. In this 
manner, although highly simplifi ed, there is an intracellular milieu and an extracellular milieu that are distinctly 
different from one another. Under normothermic conditions (37°C, appropriate balance of oxygen/carbon diox-
ide, exchange of nutrients/wastes, etc.), the fl uid bathing the cells and tissues is isotonic, or also referred to as 
extracellular-like. The normothermic fl ow of nutrients through the cellular metabolic pathways fuels the pro-
duction of ATP (adenosine triphosphate) that, in turn, drives the membrane ion pumps to maintain the osmotic 
balance. Cellular waste products are expunged from the cells, and free radicals generated by normal metabolism 
are removed from potential negative impact by the cell’s antioxidant mechanisms. Only once these basic cell 
processes for maintaining “life” are in working order can the cell’s energies be directed to further functional 
cellular processes specifi c to that cell’s “job.” 

When cells, tissues, and organs are disconnected from this “normal” set of conditions even for a short time, 
there are many potential unbalanced states leading to detrimental consequences. Absence of nutrients (glucose, 
oxygen, etc.) deprives the cells of the raw fuel components needed to generate the cell’s refi ned fuel, ATP. 
Short-term interruptions to the cell energy cycle can be compensated with derivation of cellular energy via the 
lactic acid cycle but cannot be maintained indefi nitely. However, it is important to appreciate that the overall 
cell machinery is a highly complex engine of parts and pathways that generates intermediate compounds from 
specialized reactions at specifi c steps, and that there are aspects of this cellular engineering that cannot currently 
be artifi cially replicated in the laboratory or by cell culture media. Furthermore, it is also important to remember 
the critical functions of waste removal and gas exchange, which often require specialized laboratory equipment to 
effectively compensate in the absence of the natural cellular mechanisms. Therefore, current attempts to replicate 
out-of-body normothermic conditions have the potential to be incomplete and suboptimal. 

Cellular and Molecular Considerations for Biopreservation
Biopreservation can be described as processes that suppress degradation of biologics for the post-preservation 

recovery of structure, viability, and function.1,2 Hypothermic storage (primarily 2°-8°C) has been the preferred 
practical mechanism for storing cells, tissues, and organs for short periods of time (such as applicable in typical 
hair transplantation procedures). The ability of hypothermia to suppress metabolism is the key to maintaining cells, 
tissues, and organs under ischemic conditions.3 The benefi cial properties of hypothermia have been appreciated 
for a number of years. For example, in 1939, surface cooling of ischemic limbs was found to confer preservation 
ability for rat limb survival.4 In the 1950s, hypothermia played an important role in the development of cardio-
pulmonary bypass surgery,5,6 and in 1969 the demonstration that cold storage was an effective means of kidney 
preservation7 stimulated the development of cold storage solutions for the purpose of organ preservation. Ambient 
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best quality scalp, donor tissue, and health have the potential to 
bring pre-existing stresses into the procedure even before the 
first extraction, there is the strong possibility that the further 
stresses outlined above during the procedure may result in cu-
mulative stresses that compromise the quality of the transplant. 
Even with rigorous patient screening, it may be difficult to fully 
know the variable preconditions (intangibles) a patient brings 
into the procedure that might negatively impact the quality of 
the transplant. Therefore, any potential stress mitigation steps 
(such as improved holding solutions) may reduce the likeli-
hood of an unsatisfied patient. The strip/graft holding steps of 
the hair transplantation procedure are of critical importance to 
the success of the hair transplant. This review highlights much 
information that has been accumulated regarding cell, tissue, and 
organ biopreservation, with many topics still for further scientific 
examination. The lessons from organ transplant and regenera-
tive medicine offer insight toward methods of using optimized 
intracellular-like hypothermic storage media for improved graft 
ex vivo preservation as one step in continuously maximizing 
patient outcomes. 
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