Dear Colleagues,

Recently, I have been attending numerous meetings held by members of the Global Council Society. I visited India in February for HairCon and Dubai in early March for the ISHRS World Live Surgery Workshop. Also, I attended the Taiwan Society meeting in late March and went to Beijing in May to attend a joint conference of the AAHRS–China Association of Hair Restoration Surgeons. The Taiwan Society and Chinese Society are planning to apply to be members of the Global Council.

The joint conference held by the AAHRS and the China Association of Hair Restoration Surgeons was especially meaningful and special. At the meeting, there were a total of 400 physicians, including 300 Chinese doctors and 100 Asian and international doctors. It was the second biggest conference after the ISHRS. At this meeting, many doctors shared their ideas and wisdom via the lectures and six surgical procedures were demonstrated. I was very pleased to be able to meet many of my old colleagues from the ISHRS, such as Walter Unger and Richard Shiell, whom I have not been able to see often. Richard Shiell traveled abroad for the first time in many years, since his retirement in 2006, to meet with fellow physicians and to give advice and encouragement to junior doctors. Furthermore, the knowledge shared by Walter Unger, who has 50 years of experience in hair transplantation, was a great help to many participants. I believe that it was an outstanding academic conference, which gave the opportunity to learn from experienced seniors in the field of hair transplantation.

I am aware that many members have submitted abstracts for the Hollywood ISHRS World Congress and you can expect many new and exciting things at the meeting. We have also invited experts on chemotherapy-induced alopecia, which is frequently encountered in clinical practices. I think this topic will be of great help to many of our members. I am deeply grateful to Parsa Mohebi, Program Chair, and the World Congress Committee members who have been working hard to prepare this Congress.

The ISHRS issues the Hair Transplant Forum International, or Forum for short, once every two months. Over the past 20 years, many research papers and articles on surgical skills have been published. These medical resources are extremely useful for hair transplant physicians. Unfortunately, until now there has been no way to access previously published materials. In order to access old data, you would need a paper copy of the Forum or a pdf file. To tackle this, we are developing an e-publishing platform to enable search functions. When this is in place, you will easily be able to look up research materials published in the past, which will be of great help to our members. I would like to thank Bob True for all his work and efforts on putting this in place.

Regarding potential venues for the World Congress, we have already decided Hollywood, USA in 2018, Bangkok, Thailand, in 2019 and Panama City, Panama, in 2020. We are currently in the process of thinking about potential venues for 2021. Members are welcome to make suitable suggestions, as it would be of great help. In addition, I would like to encourage you to apply for ISHRS Research Grants and recommend candidates for the Platinum Follicle Award, the Golden Follicle Award, the Distinguished Surgical Assistant Award, and the Board of Governors. I am sure that there are many suitable candidates for these grants, awards, and positions.

Lastly, I would like to sincerely thank you all for your effort and continuous support for the development of the society. I will do my best to assist in any way.

Sungjoo (Tommy) Hwang, MD, PhD, FISHRS
Seoul, South Korea
president@ishrs.org
I just returned from the Meeting of the European Hair Research Society in Bologna (www.ehrs.org). A lot of research was presented.

The hair follicle is an exciting object to study for basic scientists. This includes hair immunology, stem cells, signals, receptors, cycling, inflammation, pigmentation, hair care, and genetics. While male pattern hair loss can be attributed to several genes, female pattern hair loss appears to have a different and poorly understood genetic etiology. Minoxidil works in both conditions but some patients have a deficiency of the activating enzyme sulfonyl transferase and need higher concentrations.

As explained in this issue’s Literature Review, topical finasteride may become a new treatment option. However, in higher doses, it also suppresses systemic DHT, which would diminish the potential advantage over oral finasteride. PRP is increasingly used, but platelet lysate produced with ultrasonic waves may contain even higher concentrations of growth factors.

Hair transplantation lectures and sessions have become a regular part of hair research meetings. This is because more and more studies have demonstrated the effect of hair surgery to improve advanced alopecia.

This issue contains a study on using plasma as a holding solution and a Cyberchat discussion about graft chilling. More and more data on the final outcome of different techniques and instruments will further improve the acceptance of our work and results.

To have your report be published in an upcoming issue of the Forum, please email it to forumeditors@ishrs.org.
Hello, friends and colleagues!
This is my first Editor Emeritus column. How time flies! I have always enjoyed reading the Forums, no more so than now. Congratulations to Brad Wolf, Andreas Finner, and all the columnists. The journal has never been in better hands.

My world continues to be dominated by the unsolved mysteries of medicine, none more than the mysteries of hair biology. Rather than follicular neogenesis in a laboratory, then planting the new follicles into the scalp, the Holy Grail for me is the reversal of miniaturization of our existing follicles. See the photos in Figure 1, the second of which is computer generated as you would have guessed. But why not dream of this? We already know that hair can move from vellus to terminal and back to vellus again, and what’s more, make that transition over and over. All that is needed are the appropriate signals.

Bradford who shed light on the potassium channels, but I believe she has retired. Now this may be a great opportunity for a PhD student to take it further. By good fortune or by good research, we will find the answer.

Another fascinating area that is emerging is the relationship between anagen follicles and fat cells. Big, healthy terminal hairs bury their bulbs well into the fat layer (Figure 2, courtesy of Dr. William Parsley). Bald scalps possess much less fat than scalps with a full head of healthy hair. It seems that we can’t have one without the other. Another Valerie, Dr. Valerie Horsley of Yale School of Medicine, speaks of a correlation as yet unexplained between fat and hair growth. Even before we can discover why terminal bulbs need fat cells, why don’t we give scalps with miniaturizing hairs a fat transfer? Many case studies and trials doing just that are on their way; let’s watch this space.

Fat, as we know, contains a large reservoir of stem cells, which some of us have used successfully in the treatment of osteoarthritis. In this space, the fat is processed to remove the large lipid-filled cells leaving behind a “soup” called stromal vascular fraction (SVF). This contains stem cells, progenitor cells, pericytes, endothelial cells, fibroblasts, and some red and white cells as well as extracellular matrix and damaged cells. SVF has been successful in treating osteoarthritis but not so in hair loss. Many of us have injected SVF into balding scalps with little to no benefit. Is it possible, therefore, that the secret ingredient for hair growth is in the fat cell itself?

History will tell us that nothing is forever, especially in this fast-evolving field of hair restoration. Less invasive treatments have been the feature of the evolution of hair restoration in my 40-year tenure, perhaps soon we will have good enough reversal of miniaturization to dispense with surgery. Burns, accidents, and scarring alopecia loss I imagine will still need surgery, but hopefully for our average MPHL and FPHL patients… no.
The following parameters were taken into consideration for the study:

- A histological study with MTT stain (a colorimetric assay for assessing cell metabolic activity) was done in order to confirm the viability of cells in the grafts at 12 hours and 72 hours.
- Periodical post-operative patient follow-up with regular photographs and trichoscan evaluations was used to identify any event of anagen effluvium due to post-surgical shock loss.
- Trichoscan study for hair density was done at 3 months for hair growth.
- Hair thickness was assessed at 6 months and 12 months for the quality of hair growth.

Preparation of autologous plasma

Preparation of autologous plasma was the first step before performing the hair transplant. We collected 23cc of blood from the patient in a syringe with 2cc ACD (acid citrate dextrose) solution as an anti-coagulant. The blood was transferred to a high-quality glass container designed by the author. The blood was centrifuged in a temperature-controlled (19°Celsius) centrifuge machine at 5,000 RPM (rotations per minute) for 16 minutes. The process resulted in the separation of red blood cells (RBCs) at the bottom of the tube and plasma with platelets forming the upper fluid compartment. The 23cc of blood yielded approximately 12cc of plasma. Hence, we can deduce that the platelet concentration was twice normal levels. The lab further confirmed that the platelet count ranged between 400,000–500,000/mm³. The plasma created was then stored in a sterile stainless steel bowl (a petri dish can also be used) maintaining a temperature of 12° ± 2°Celsius on a cool gel pack ready to receive the grafts.

The harvested grafts were divided randomly into two groups, with an equal number of grafts per side. Control Group A grafts were stored in LR solution and test Group B were stored in plasma solution. The temperature of both graft holding solutions was maintained as the same. Grafts dipped in plasma formed a very loose clump. A trained assistant separated the individual grafts from a small clump and placed it on the surgeon’s hand to implant.

Six volunteer patients ranging in age between 25 to 40 years old and having similar grades of male pattern hair loss (MPHL) were included in the study. Grafts were implanted over the bilateral fronto-temporal areas as planned. Grafts stored in plasma solution were implanted on the right fronto-temporal side and the grafts stored in LR solution were implanted on the left fronto-temporal side. The same number of grafts were implanted resulting in a standard density of 40 grafts/cm². Routine post-operative care of the donor and the recipient areas was followed as per general guidelines for all hair transplant patients. The study was conducted as follows:

- The graft samples A and B were sent for MTT staining at 12 hours and 72 hours of graft holding time in order to determine viability of the cells.
- Patient follow-ups were conducted at 1, 2, 3, 4, 6, and 12 months after transplant.
- Photographs were taken for comparison of the left and right fronto-temporal areas with and without flash.
- Hair count and density were taken on both sides using trichoscan.
- At the 6- and 12-month follow-ups, photographs and trichoscan for hair thickness were repeated for evaluation of terminal hair.

OBSERVATION

MTT staining at 12 hours showed that grafts stored in LR solution showed poor staining, while the grafts stored in plasma solution were well stained, indicating good cell viability in the plasma group when compared to the LR group (Figure 1). MTT staining at 72 hours showed grafts stored in plasma showed good staining while the LR group showed very poor staining.

Trichoscan study

As shown in Table 1, the hair count and density in the LR group were significantly higher than in the plasma group. The unpaired t-test showed the LR group had a mean 4.5 ± 2.95 SD and the plasma group had mean 27.50 ± 4.135 SD with P-value < .001.

Preparation of autologous plasma

Preparation of autologous plasma was the first step before performing the hair transplant. We collected 23cc of blood from the patient in a syringe with 2cc ACD (acid citrate dextrose) solution as an anti-coagulant. The blood was transferred to a high-quality glass container designed by the author. The blood was centrifuged in a temperature-controlled (19°Celsius) centrifuge machine at 5,000 RPM (rotations per minute) for 16 minutes. The process resulted in the separation of red blood cells (RBCs) at the bottom of the tube and plasma with platelets forming the upper fluid compartment. The 23cc of blood yielded approximately 12cc of plasma. Hence, we can deduce that the platelet concentration was twice normal levels. The lab further confirmed that the platelet count ranged between 400,000–500,000/mm³. The plasma created was then stored in a sterile stainless steel bowl (a petri dish can also be used) maintaining a temperature of 12° ± 2°Celsius on a cool gel pack ready to receive the grafts.

The harvested grafts were divided randomly into two groups, with an equal number of grafts per side. Control Group A grafts were stored in LR solution and test Group B were stored in plasma solution. The temperature of both graft holding solutions was maintained as the same. Grafts dipped in plasma formed a very loose clump. A trained assistant separated the individual grafts from a small clump and placed it on the surgeon’s hand to implant.

Six volunteer patients ranging in age between 25 to 40 years old and having similar grades of male pattern hair loss (MPHL) were included in the study. Grafts were implanted over the bilateral fronto-temporal areas as planned. Grafts stored in plasma solution were implanted on the right fronto-temporal side and the grafts stored in LR solution were implanted on the left fronto-temporal side. The same number of grafts were implanted resulting in a standard density of 40 grafts/cm². Routine post-operative care of the donor and the recipient areas was followed as per general guidelines for all hair transplant patients. The study was conducted as follows:

- The graft samples A and B were sent for MTT staining at 12 hours and 72 hours of graft holding time in order to determine viability of the cells.
- Patient follow-ups were conducted at 1, 2, 3, 4, 6, and 12 months after transplant.
- Photographs were taken for comparison of the left and right fronto-temporal areas with and without flash.
- Hair count and density were taken on both sides using trichoscan.
- At the 6- and 12-month follow-ups, photographs and trichoscan for hair thickness were repeated for evaluation of terminal hair.

OBSERVATION

MTT staining at 12 hours showed that grafts stored in LR solution showed poor staining, while the grafts stored in plasma solution were well stained, indicating good cell viability in the plasma group when compared to the LR group (Figure 1). MTT staining at 72 hours showed grafts stored in plasma showed good staining while the LR group showed very poor staining.

Trichoscan study

As shown in Table 1, the hair count and density in the LR group were significantly higher than in the plasma group. The unpaired t-test showed the LR group had a mean 4.5 ± 2.95 SD and the plasma group had mean 27.50 ± 4.135 SD with P-value < .001.

TABLE 1. Hair Count and Density at 3 Months on LR Side and Plasma Side (Implanted density: 40 grafts/cm²)

<table>
<thead>
<tr>
<th>Group</th>
<th>Hair Count</th>
<th>Hair Density</th>
<th>Average % of Hair Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>10</td>
<td>3.3</td>
<td>0.75%</td>
</tr>
<tr>
<td>Plasma</td>
<td>10</td>
<td>3.3</td>
<td>64.5%</td>
</tr>
<tr>
<td>LR</td>
<td>12</td>
<td>5.5</td>
<td>0.75%</td>
</tr>
<tr>
<td>Plasma</td>
<td>12</td>
<td>5.5</td>
<td>64.5%</td>
</tr>
</tbody>
</table>

CLINICAL EVALUATION

Photographs of the right and left fronto-temporal areas were taken at 50 days (Figure 3) and 120 days (Figure 4) after hair transplant for evaluation of hair growth and anagen effluvium. Also shown is a patient 120 days after transplant. Plasma holding solution was used for all grafts (Figure 5).

DISCUSSION

The most important benefit of a graft holding solution would be an increase in hair yield from the transplanted grafts. The optimum holding solution would reduce the damage from reperfusion injury and free radical formation as well as from ionic imbalance and variation in osmolality created by the ischemic phase.

Holding solutions are formulated according to the composition of intracellular and extracellular body fluid environment.
delayed, and grafts look shiny and more hydrated even at the end of 4 hours holding time. Ubel in his study had implanted grafts after dipping in plasma and reported a 5 to 53% increase in hair count after 7 months of hair transplant.²,⁶

MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) Assay

The MTT assay is a colorimetric assay for assessing cell metabolic activity. NAD(P)H-dependent cellular oxidoreductase enzymes reflect the number of viable cells present under defined conditions. These enzymes are capable of reducing the tetrazolium dye MTT 3-(4,5-dimethyl-thiazole-2-yl)-2,5-diphenyl tetrazolium bromide) to its insoluble form.⁹ Therefore, the dye can detect metabolically active live cells. In our study, samples of hair follicle grafts were sent for MTT histological assay in order to detect live cells. Results of staining showed that at 12 hours the grafts held in plasma solution were better stained than those held in LR solution. Staining results at 72 hours were surprising: plasma grafts showed good staining while LR grafts showed very poor staining indicating that the cells were viable in plasma grafts even at the end of 72 hours.

Trichoscan study done at 3 months for the hair count on the LR side showed an average of 1.3 (density 4.4g/cm²); on the plasma side, the average hair count was 8.3 (density 27.5g/cm²). Thus, the plasma side had 68.75% hair growth, while the LR side had only 11% growth. The unpaired t-test showed mean 4.5 ± 2.95 SD for the LR side and mean 27.50 ± 4.135 SD for the plasma side with a P-value < .001, which is significant. This indicates that anagen effluvium (Figure 6) on the plasma side was 31.25% while on LR side the effluvium was 89.00%. This shows that anagen effluvium was controlled by 58.75%, which is significant (P-value < .001).

In the first 7 days following a hair transplant, there is a period of inflammatory response (involving neutrophils, eosinophils, macrophages, platelets, fibroblasts and growth factors) in which both erythema and edema occur followed by apoptosis and the grafted, as well the existing, hair follicles may enter into an involution phase resulting in hair shedding. This process is triggered and propagated due to ischemia. The follicles become refractory and those that survive will regrow at the stimulus of...
the next growth cycle, which begins after the third month and continues up to the seventh month. Prevention of anagen effluvium can be achieved with prevention of apoptosis of the more metabolically active progeny of the stem cells. This observation may help us in the development of an ideal holding solution by further bio-enhancement of platelet and plasma solution. Hair thickness measured at 6 months by trichoscan showed an average of 53.5 µmm on the LR side while on plasma side it was 65.66 µmm, which was significantly higher (Figure 7). The unpaired t-test showed the LR group mean 53.5 ± 6.377 SD and the plasma group mean 65.67 ± 9.688 SD. The P-value was <.001, which is very significant.

At the 12-month follow-up, hair thickness measured 60.6 µmm on the LR side while on the plasma side it was 66.125 µmm. The thickness of hair on the LR side increased by 12 months but was still less than on the plasma side. The unpaired t-test showed the LR group mean 60.00 ± 1.414 SD, and the plasma group mean 69.86 ± 9.218 SD. The P-value was < .001, which is very significant.

Hair diameter depends on a number of viable cells in the matrix. These are the mesodermal stem cells known to be very sensitive to ischemia. Ischemia leads to accumulation of free radicals and anaerobic metabolic pathways resulting in apoptosis of cells thereby affecting hair thickness. The hair thickness on the plasma graft side was better than on the LR side. This may be because of the effect of multiple beneficial factors in the plasma holding solution. Platelets are activated on contact with collagen around hair follicles resulting in the release of various platelet derived growth factors.1,3,11 Fibrinogen in plasma gets converted to fibrin, which forms a mesh in which platelets are trapped.3,4,6 This fibrin mesh with activated platelets forms a 3D fibrin scaffold. Platelet-rich fibrin (PRF) was first described by Choukroun et al. in France.10,11 Fibrin glue along with skeletal myoblasts in the fibrin scaffold preserve cardiac function after myocardial infarction.12 In vitro prefabrication of human cartilage is created in shapes using fibrin glue and human chondrocytes.13 Long-term regeneration of human epidermis is achieved on third-degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix.13 There is a definite role of the fibrin matrix in angiogenesis.14

CONCLUSION
Autologous plasma is an easily available graft holding solution. It is isotonic in nature having nutrient growth factors as well as the advantage of fibrin. Platelets along with the plasma provide multiple growth factors promoting epithelialization and neovascularization, and action on hair follicle stem cells to improve growth. The fibrin coating around the graft makes it sticky and prevents dehydration. The growth factors and nutrients successfully prevent the anagen effluvium and shock loss post hair transplant. The thickness of hair and yield of the graft is also better in plasma. The split-scalp controlled study certainly shows the advantages of using plasma over other extracellular graft holding solutions. At the same time, it is not an ideal graft holding solution where chilling cannot be done and the availability of energy source is not clear. But this can be developed as an ideal graft holding solution by some innovative bioenhancement.

References