Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

NLR functions beyond pathogen recognition

Abstract

The last 10 years have witnessed the identification of a new class of intracellular pattern-recognition molecules—the nucleotide-binding domain and leucine-rich repeat–containing family (NLR). Members of this family garnered interest as pattern-recognition receptors able to trigger inflammatory responses against pathogens. Many studies support a pathogen-recognition function for human NLR proteins and shed light on their role in the broader control of adaptive immunity and various disease states. Other evidence suggests that NLRs function in processes unrelated to pathogen detection. Here we discuss recent advances in our understanding of the biology of the human NLR proteins and their non-pathogen-recognition function in tissue homeostasis, apoptosis, graft-versus-host disease and early development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The human NLR family.
Figure 2: NLR functions in the human body and at the cellular level.

Similar content being viewed by others

References

  1. Koonin, E.V. & Aravind, L. The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem. Sci. 25, 223–224 (2000).

    CAS  PubMed  Google Scholar 

  2. Leipe, D.D., Koonin, E.V. & Aravind, L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343, 1–28 (2004).

    CAS  PubMed  Google Scholar 

  3. Proell, M., Riedl, S.J., Fritz, J.H., Rojas, A.M. & Schwarzenbacher, R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS ONE 3, e2119 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Riedl, S.J. & Salvesen, G.S. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 8, 405–413 (2007).

    CAS  PubMed  Google Scholar 

  5. Franchi, L., Warner, N., Viani, K. & Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fritz, J.H., Ferrero, R.L., Philpott, D.J. & Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006).

    CAS  PubMed  Google Scholar 

  7. Kufer, T.A. Signal transduction pathways used by NLR-type innate immune receptors. Mol. Biosyst. 4, 380–386 (2008).

    CAS  PubMed  Google Scholar 

  8. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  9. Ting, J.P., Duncan, J.A. & Lei, Y. How the noninflammasome NLRs function in the innate immune system. Science 327, 286–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  11. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    CAS  PubMed  Google Scholar 

  12. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Zaph, C. et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    CAS  PubMed  Google Scholar 

  14. Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA 106, 15813–15818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    CAS  PubMed  Google Scholar 

  16. Clarke, T.B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, X.L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    CAS  PubMed  Google Scholar 

  18. Philpott, D.J. & Girardin, S.E. Nod-like receptors: sentinels at host membranes. Curr. Opin. Immunol. 22, 428–434 (2010).

    CAS  PubMed  Google Scholar 

  19. Allen, I.C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 207, 1045–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirota, S.A. et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm. Bowel. Dis. published online: doi:10.1002/ibd.21478 (24 September 2010).

  21. Zaki, M.H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  23. LeBlanc, P.M. et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3, 146–157 (2008).

    CAS  PubMed  Google Scholar 

  24. Zaki, M.H., Vogel, P., Body-Malapel, M., Lamkanfi, M. & Kanneganti, T.D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol. 185, 4912–4920 (2010).

    CAS  PubMed  Google Scholar 

  25. Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199 (2010).

    CAS  PubMed  Google Scholar 

  26. Bauernfeind, F.G. et al. NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    CAS  PubMed  Google Scholar 

  27. O′Connor, W. Jr., Harton, J.A., Zhu, X., Linhoff, M.W. & Ting, J.P. CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J. Immunol. 171, 6329–6333 (2003).

    PubMed  Google Scholar 

  28. Shi, Y., Evans, J.E. & Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    CAS  PubMed  Google Scholar 

  29. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  31. Mitroulis, I., Skendros, P. & Ritis, K. Targeting IL-1beta in disease; the expanding role of NLRP3 inflammasome. Eur. J. Intern. Med. 21, 157–163 (2010).

    CAS  PubMed  Google Scholar 

  32. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  33. Watanabe, H. et al. Danger signaling through the inflammasome acts as a master switch between tolerance and sensitization. J. Immunol. 180, 5826–5832 (2008).

    CAS  PubMed  Google Scholar 

  34. Eisenbarth, S.C., Colegio, O.R., O′Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085–2089 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, H., Willingham, S.B., Ting, J.P. & Re, F. Inflammasome activation by alum and alum′s adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008).

    CAS  PubMed  Google Scholar 

  38. McKee, A.S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009).

    CAS  PubMed  Google Scholar 

  39. Moreira, L.O. et al. Modulation of adaptive immunity by different adjuvant-antigen combinations in mice lacking Nod2. Vaccine 26, 5808–5813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    CAS  PubMed  Google Scholar 

  41. Guarda, G. et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460, 269–273 (2009).

    CAS  PubMed  Google Scholar 

  42. Rosenstiel, P., Till, A. & Schreiber, S. NOD-like receptors and human diseases. Microbes Infect. 9, 648–657 (2007).

    CAS  PubMed  Google Scholar 

  43. Jin, Y. et al. NALP1 in vitiligo-associated multiple autoimmune disease. N. Engl. J. Med. 356, 1216–1225 (2007).

    CAS  PubMed  Google Scholar 

  44. Magitta, N.F. et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison′s disease and type 1 diabetes. Genes Immun. 10, 120–124 (2009).

    CAS  PubMed  Google Scholar 

  45. Zurawek, M. et al. A coding variant in NLRP1 is associated with autoimmune Addison′s disease. Hum. Immunol. 71, 530–534 (2010).

    CAS  PubMed  Google Scholar 

  46. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    CAS  PubMed  Google Scholar 

  49. Penack, O., Holler, E. & van den Brink, M.R. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 115, 1865–1872 (2010).

    CAS  PubMed  Google Scholar 

  50. Holler, E. et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 104, 889–894 (2004).

    CAS  PubMed  Google Scholar 

  51. Penack, O. et al. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J. Exp. Med. 206, 2101–2110 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen, Y. et al. Insufficient evidence for association of NOD2/CARD15 or other inflammatory bowel disease-associated markers on GVHD incidence or other adverse outcomes in T-replete, unrelated donor transplantation. Blood 115, 3625–3631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Granell, M. et al. Common variants in NLRP2 and NLRP3 genes are strong prognostic factors for the outcome of HLA-identical sibling allogeneic stem cell transplantation. Blood 112, 4337–4342 (2008).

    CAS  PubMed  Google Scholar 

  54. Perco, P. et al. Histogenomics: association of gene expression patterns with histological parameters in kidney biopsies. Transplantation 87, 290–295 (2009).

    CAS  PubMed  Google Scholar 

  55. Conti, B.J. et al. CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J. Biol. Chem. 280, 18375–18385 (2005).

    CAS  PubMed  Google Scholar 

  56. Benko, S., Magalhaes, J.G., Philpott, D.J. & Girardin, S.E. NLRC5 limits the activation of inflammatory pathways. J. Immunol. 185, 1681–1691 (2010).

    CAS  PubMed  Google Scholar 

  57. Cui, J. et al. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141, 483–496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fiorentino, L. et al. A novel PAAD-containing protein that modulates NF-κB induction by cytokines tumor necrosis factor-α and interleukin-1β. J. Biol. Chem. 277, 35333–35340 (2002).

    CAS  PubMed  Google Scholar 

  59. Fontalba, A., Gutierrez, O. & Fernandez-Luna, J.L. NLRP2, an inhibitor of the NF-κB pathway, is transcriptionally activated by NF-κB and exhibits a nonfunctional allelic variant. J. Immunol. 179, 8519–8524 (2007).

    CAS  PubMed  Google Scholar 

  60. Grenier, J.M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett. 530, 73–78 (2002).

    CAS  PubMed  Google Scholar 

  61. Kinoshita, T., Wang, Y., Hasegawa, M., Imamura, R. & Suda, T. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1β secretion. J. Biol. Chem. 280, 21720–21725 (2005).

    CAS  PubMed  Google Scholar 

  62. Imamura, R. et al. Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J. Immunol. 184, 5874–5884 (2010).

    CAS  PubMed  Google Scholar 

  63. Wang, Y. et al. PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int. Immunol. 16, 777–786 (2004).

    CAS  PubMed  Google Scholar 

  64. Lich, J.D. et al. Monarch-1 suppresses non-canonical NF-κB activation and p52-dependent chemokine expression in monocytes. J. Immunol. 178, 1256–1260 (2007).

    CAS  PubMed  Google Scholar 

  65. Williams, K.L., Taxman, D.J., Linhoff, M.W., Reed, W. & Ting, J.P. Monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J. Immunol. 170, 5354–5358 (2003).

    CAS  PubMed  Google Scholar 

  66. Arthur, J.C. et al. NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J. Immunol. 185, 4515–4519 (2010).

    CAS  PubMed  Google Scholar 

  67. Kuenzel, S. et al. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J. Immunol. 184, 1990–2000 (2010).

    CAS  PubMed  Google Scholar 

  68. Neerincx, A. et al. A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J. Biol. Chem. 285, 26223–26232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J. Biol. Chem. 277, 29874–29880 (2002).

    CAS  PubMed  Google Scholar 

  70. Watanabe, T., Kitani, A., Murray, P.J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5, 800–808 (2004).

    CAS  PubMed  Google Scholar 

  71. Hsu, L.C. et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl. Acad. Sci. USA 105, 7803–7808 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Eitas, T.K. & Dangl, J.L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 13, 472–477 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bortoluci, K.R. & Medzhitov, R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell. Mol. Life Sci. 67, 1643–1651 (2010).

    CAS  PubMed  Google Scholar 

  74. Travassos, L.H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    CAS  PubMed  Google Scholar 

  75. Homer, C.R., Richmond, A.L., Rebert, N.A., Achkar, J.P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn′s disease pathogenesis. Gastroenterology 139, 1630–1641 (2010).

    CAS  PubMed  Google Scholar 

  76. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    CAS  PubMed  Google Scholar 

  77. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn′s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  79. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    PubMed  PubMed Central  Google Scholar 

  81. da Silva Correia, J. et al. Nod1-dependent control of tumor growth. Proc. Natl. Acad. Sci. USA 103, 1840–1845 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Richardson, W.M. et al. Nucleotide-binding oligomerization domain-2 inhibits toll-like receptor-4 signaling in the intestinal epithelium. Gastroenterology 139, 904–917 (2010).

    CAS  PubMed  Google Scholar 

  83. Miao, E.A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).

    CAS  PubMed  Google Scholar 

  85. Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    CAS  PubMed  Google Scholar 

  86. Zamboni, D.S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7, 318–325 (2006).

    CAS  PubMed  Google Scholar 

  87. Liston, P. et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353 (1996).

    CAS  PubMed  Google Scholar 

  88. Xu, D.G. et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat. Med. 3, 997–1004 (1997).

    CAS  PubMed  Google Scholar 

  89. Sanna, M.G. et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell. Biol. 22, 1754–1766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bertrand, M.J. et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789–801 (2009).

    CAS  PubMed  Google Scholar 

  91. Krieg, A. et al. XIAP mediates NOD signaling via interaction with RIP2. Proc. Natl. Acad. Sci. USA 106, 14524–14529 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bruey, J.M. et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  93. de Rivero Vaccari, J.P. et al. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 1251–1261 (2009).

    CAS  PubMed  Google Scholar 

  94. Arnoult, D. et al. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J. Cell Sci. 122, 3161–3168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Moore, C.B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008).

    CAS  PubMed  Google Scholar 

  96. Tattoli, I. et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 9, 293–300 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer 10, 561–574 (2010).

    CAS  PubMed  Google Scholar 

  98. Steimle, V., Otten, L.A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993).

    CAS  PubMed  Google Scholar 

  99. Swanberg, M. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat. Genet. 37, 486–494 (2005).

    CAS  PubMed  Google Scholar 

  100. Meissner, T.B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl. Acad. Sci. USA 107, 13794–13799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, J. & Coaker, G. Nuclear trafficking during plant innate immunity. Mol. Plant 1, 411–422 (2008).

    CAS  PubMed  Google Scholar 

  102. Cheng, Y.T. et al. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21, 2503–2516 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. McDaniel, P. & Wu, X. Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta). Mol. Reprod. Dev. 76, 151–159 (2009).

    CAS  PubMed  Google Scholar 

  104. Zhang, P. et al. Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS ONE 3, e2755 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Tian, X., Pascal, G. & Monget, P. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol. Biol. 9, 202 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Tong, Z.B. et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268 (2000).

    CAS  PubMed  Google Scholar 

  107. Maraldi, T. et al. MATER protein as substrate of PKCepsilon in human cumulus cells. Mol. Hum. Reprod. 15, 499–506 (2009).

    CAS  PubMed  Google Scholar 

  108. Murdoch, S. et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat. Genet. 38, 300–302 (2006).

    CAS  PubMed  Google Scholar 

  109. Qian, J., Deveault, C., Bagga, R., Xie, X. & Slim, R. Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Hum. Mutat. 28, 741 (2007).

    PubMed  Google Scholar 

  110. Westerveld, G.H. et al. Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure. Hum. Reprod. 21, 3178–3184 (2006).

    CAS  PubMed  Google Scholar 

  111. Hamatani, T. et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278 (2004).

    CAS  PubMed  Google Scholar 

  112. Bruey, J.M. et al. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages. J. Biol. Chem. 279, 51897–51907 (2004).

    CAS  PubMed  Google Scholar 

  113. Ji, S. et al. Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by fusobacterium nucleatum in gingival epithelial cells. Infect. Immun. 77, 1044–1052 (2009).

    CAS  PubMed  Google Scholar 

  114. Meyer, E. et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet. 5, e1000423 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. Ponsuksili, S. et al. Bovine NALP5, NALP8, and NALP9 genes: assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos. Biol. Reprod. 74, 577–584 (2006).

    CAS  PubMed  Google Scholar 

  116. Lech, M., Avila-Ferrufino, A., Skuginna, V., Susanti, H.E. & Anders, H.J. Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int. Immunol. 22, 717–728 (2010).

    CAS  PubMed  Google Scholar 

  117. Magalhaes, J.G. et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep. 6, 1201–1207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  PubMed  Google Scholar 

  119. Miao, E.A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. USA 107, 3076–3080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. & Kolodner, R.D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jéru, I. et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc. Natl. Acad. Sci. USA 105, 1614–1619 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Williams, K.L. et al. The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J. Biol. Chem. 280, 39914–39924 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose work could not be cited due to space limitations. We thank V. Hornung (University of Bonn) for insightful comments, K. Lautz for critical reading of the manuscript and H. Bielig for help with graphic design. P.J.S. is a Howard Hughes Medical Institute foreign scholar. T.A.K. is supported by the German Research Foundation (DFG) within the collaborative research centre SFB670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe J Sansonetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kufer, T., Sansonetti, P. NLR functions beyond pathogen recognition. Nat Immunol 12, 121–128 (2011). https://doi.org/10.1038/ni.1985

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1985

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing